
16472 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 17, 1 SEPTEMBER 2022

Self-Adaptive Framework With Master–Slave
Architecture for Internet of Things

Euijong Lee , Young-Duk Seo, and Young-Gab Kim , Member, IEEE

Abstract—The Internet of Things (IoT) connects a wide range
of entities and can be applied to various types of environments. In
addition, IoT environments can be dynamically changed at run-
time; thus, IoT systems can be deployed in various environments.
To support stable operation, IoT systems must adapt to dynamic
environmental changes. The self-adaptive software aims to adjust
various artifacts or attributes of software to adapt the detected
context by itself, and various studies have applied self-adaptive
methods in IoT-related research. In this study, we proposed a
self-adaptive software framework with master–slave architecture-
based finite-state machine modeling. In addition, model checking
is applied, which is a formal method to verify IoT systems at
runtime, and a cache-based mechanism is applied to reduce
the computational time required for verification. To demonstrate
the efficiency of the proposed framework, an empirical evalua-
tion was performed with several model-checking tools (RINGA,
NuSMV, nuXmv, and CadenceSMV), and the results showed
the efficiency of the proposed framework with the cache-based
mechanism. In addition, an example application was investigated
with smart greenhouse scenarios, and the application was imple-
mented on Android and Arduino. The application was operated
in physical environments, and the results showed the practical
usability of the proposed framework with verification at runtime.

Index Terms—Finite-state machine, Internet of Things (IoT),
model checking, self-adaptive software.

I. INTRODUCTION

THE Internet of Things (IoT) interconnects various enti-
ties called “things” having a distinct existence includ-

ing physical or nonphysical (e.g., sensor, actuator, digital
user, and human user) [1], [2]. Therefore, IoT systems can
support the collection of data from sensor-related entities,
change physical-related actions by actuator-related entities,
and generate meaningful information by analyzing the col-
lected data from the entities. With these characteristics, various
IoT-related studies have focused on various domains (e.g.,
drones [3], [4], smart buildings [5], [6], video surveillance [7],
and health care applications [8]). In addition, IoT systems

Manuscript received 8 September 2021; revised 16 December 2021;
accepted 7 February 2022. Date of publication 10 February 2022; date of
current version 24 August 2022. This work was supported by the National
Research Foundation of Korea (NRF) Grant funded by the Korea Government
(MSIT) under Grant 2021R1A2C2012635 and Grant 2021R1G1A101097111.
(Corresponding author: Young-Gab Kim.)

Euijong Lee is with the School of Computer Science, Chungbuk National
University, Cheongju 28644, South Korea (e-mail: kongjjagae@cbnu.ac.kr).

Young-Duk Seo is with the Department of Computer Engineering, Inha
University, Incheon 22212, South Korea (e-mail: mysid88@inha.ac.kr).

Young-Gab Kim is with the Department of Computer and Information
Security, and Convergence Engineering for Intelligent Drone, Sejong
University, Seoul 05006, South Korea (e-mail: alwaysgabi@sejong.ac.kr).

Digital Object Identifier 10.1109/JIOT.2022.3150598

Fig. 1. Example of a dynamic IoT environment.

can be dynamically changed for various reasons, such as
changing user requirements, joining new IoT devices, losing
IoT devices, or occurring environmental changes. Therefore,
IoT systems in dynamic environments must support stable
execution at runtime to adapt to various changes.

The self-adaptive software aims to adapt detected contexts
that denote all aspects in an environment that affect soft-
ware operation by adjusting various artifacts or attributes
of the software. Thus, one of the important goals of the
self-adaptive software is to support stable execution of the
software under dynamic changes, including environmental and
software changes. In this context, various studies on self-
adaptation can be applied to IoT systems to support stable
execution with the minimized human involvement. Recently,
the self-adaptive software has been applied to IoT systems
from various viewpoints and IoT domains [3], [5]–[23].

Several IoT systems can be dynamically changed for various
reasons, such as changing user requirements, joining new IoT
devices, losing IoT devices, or environmental changes. The
motivation of this study is to apply self-adaptive concepts to
IoT systems with dynamically changing environments to sup-
port stable execution at runtime. In addition, we focused on
IoT environments in which IoT devices and requirements are
closely related; thus, the operations of the actuators can affect
sensed values and requirement satisfaction. Fig. 1 shows an
IoT-based smart home example that we focused on.

In the example, there are three requirements (i.e., light
intensity, temperature, and humidity) with sensors and four
IoT devices (i.e., light controller, windows controller, air con-
ditioner, and humidifier). It is assumed that several sensors
monitor the environmental factors related to requirements.

2327-4662 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7308-7392
https://orcid.org/0000-0001-9585-8808

LEE et al.: SELF-ADAPTIVE FRAMEWORK WITH MASTER–SLAVE ARCHITECTURE FOR INTERNET OF THINGS 16473

The dotted line denotes the relationships between the require-
ments and the IoT devices. As depicted in the figure, each
requirement is related to several devices, and this denotes
that an operation can affect multiple requirements (e.g., the
temperature requirement can be changed by the operation of
two devices). Although this is a simple example, it involves
various dynamic factors: 1) IoT devices can be connected
or disconnected; 2) the requirements satisfaction criteria can
be changed; 3) the operations of IoT devices affect related
requirements (e.g., turning on the air conditioner to reduce
temperature can affect humidity); and 4) external environ-
mental factors affect requirements (e.g., the requirements
can be affected by outside conditions). In addition, a smart
home requires self-adaptation to satisfy the requirements of
dynamic changes. In addition to this example, there are sev-
eral IoT devices that operate in dynamic environments. In
addition, recent studies have applied self-adaptation in var-
ious IoT domains (e.g., emergency handling systems [21],
video surveillance [7], smart building [6], automated parking
lots [17], health IoT [8], and greenhouses [22]).

In this study, we proposed a self-adaptive framework to sup-
port dynamic adaptation in IoT environments. The proposed
approach is based on the initial study (i.e., RINGA [9]), which
is a self-adaptive software framework with model checking
for verification at runtime. The initial study includes finite-
state machine modeling for self-adaptive software, and it is
expended for modeling IoT environments [12]. However, there
are some limitations in previous research: 1) increasing com-
puting power is required when the model size is large and
complicated and 2) the modeling can be performed in a host
device; thus, the relationship among IoT entities is predefined.

To accomplish the motivation and overcome the limitations,
we proposed a framework based on the concept of a self-
adaptive system; the main system features and contributions
of our work are summarized as follows.

1) An enhanced finite-state machine was proposed to
describe IoT systems with a master/slave architecture to
enhance the configuration between various IoT artifacts.

2) A self-adaptive process was proposed using the proposed
finite-state machine. In the adaptation process, the finite-
state machine was used for verification at runtime using
the cache-based abstraction method [24], and the game-
theory-based algorithm [11] was applied to determine
adaptation strategies. The applied methods are in good
agreement with the proposed finite-state machine in the
self-adaptive process.

3) A comparison with our earlier work (i.e., RINGA [10])
and model checkers (i.e., CadenceSMV [25],
NuSMV [26], [27], and nuXmv [28], [29]) were
performed. Reasonable results were obtained, indicating
that the proposed approach can be applied at runtime
in complex IoT environments.

4) An IoT-based greenhouse application was implemented
in the real physical world to demonstrate the usability
and effectiveness of the proposed framework.

The remainder of this article is organized as follows.
Section II provides the background and related work.
Section III introduces the proposed self-adaptive framework

for the IoT environment. Section IV presents the results of
empirical experiments compared with other model-checking
tools. Section V presents the results of experiments with an
IoT-based smart greenhouse application. Section VI discusses
the limitations and future work, and Section VII concludes the
study.

II. BACKGROUND AND RELATED WORK

In this section, the background and related work are
described. Model checking is introduced in Section II-A.
Section II-B briefly describes the definition of the self-adaptive
software. Section II-C describes the self-adaptive software
with the abstraction-based model-checking method, which
is the initial research aim of this study. In Section II-D,
self-adaptive software-based IoT studies are introduced.

A. Model Checking

Model checking is a verification technique that uses a tran-
sition system and temporal logic [30]. The transition system
is used to model target systems, and temporal logic is used
to describe specifications (i.e., detailed requirements of the
designed model). The transition system consists of states and
transitions between states. The status denotes the specific
status of the designed system, and transitions describe the
directed transition between states. The transition system used
in model checking can be described as follows [30].

1) S is the set of states.
2) Act is the set of actions.
3) →⊆ S × Act × S is the transition relation.
4) I ⊆ S is the set of initial states.
5) AP is the set of atomic propositions.
6) L : S → 2AP is a power of the label function.
In addition, the transition system can be used in various

forms, such as finite-state machine [9]–[12], [24], discrete-time
Markov chain [31]–[34], timed automata [35], and proba-
bilistic models [36], [37]. As described, temporal logics are
described specifications in model checking, and linear time
logic (LTL) and computation tree logic (CTL) are generally
used to describe specifications [38]. CTL is a branching-time
logic; thus, CTL describes specifications in which the future
is not determined.

In addition, LTL and CTL have been improved by several
studies to describe more expressions [39]–[49]. In this study,
we applied model checking to verify IoT systems, and the
model abstraction approach was used to enhance the verifica-
tion performance at runtime. The details are presented in the
next section.

B. Self-Adaptive Software

The self-adaptive software aims to adjust various artifacts
or attributes of software to adapt the detected context by
itself [50]. The context denotes everything in environments
that can affect the software. In addition, for the self-adaptive
software, detecting the context and adapting operations are
continuously required; thus, a cycle is needed to deal with
self-adaptation [50]. The cycle is called the adaptation loop,

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

16474 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 17, 1 SEPTEMBER 2022

and the loop consists of four processes. The processes are
described as follows.

1) The monitoring process is responsible for collecting data
from the software itself and the operating environment.

2) The analysis (detection) process is responsible for ana-
lyzing the symptoms using data from the monitoring
process.

3) The planning (deciding) process is responsible for decid-
ing how to change artifacts or attributes to achieve
better performance (i.e., it is responsible for detecting
adaptation strategies if adaptation is required).

4) The executing (acting) process is responsible for apply-
ing the change (i.e., adaptive strategy).

The loop that consists of four processes is called the MAPE
loop. In addition, the loop can share knowledge to share
data among the processes; this loop is called the MAPE-K
loop [51]. However, the concept of the self-adaptive software
has been applied to various IoT studies [3], [5]–[8], [13]–[21],
[52]–[56]. The details of the application of the self-adaptive
IoT are described in Section II-D. In addition, the proposed
framework consists of the MAPE-K loop for IoT systems, and
the details are described in Section III.

C. Self-Adaptive Software With Model Checking

The proposed framework is based on the self-adaptive soft-
ware and a model abstraction-based verification method. The
initial studies are introduced in this section. First, the self-
adaptive software framework with model checking is intro-
duced in Section II-C1. The cache-based model abstraction is
presented in Section II-C2. In Section II-C3, a self-adaptive
software framework for IoT is introduced. The limitations of
the initial studies and the purpose of the proposed framework
are described in each section.

1) Self-Adaptive Software Framework With Model
Abstraction: In this section, a model abstraction-based self-
adaptive software framework is introduced and the framework
is called RINGA [10]. RINGA was proposed to design the
self-adaptive software with model checking. To apply model
checking, RINGA provided rules to design a finite-state
machine and a finite-state machine called self-adaptive FSM
(i.e., SA-FSM). SA-FSM reflected the characteristics of the
self-adaptive software, and the finite-state machine was used
to design a self-adaptive system.

RINGA applies model checking to verify the system at run-
time, but model checking has a chronic problem called state
explosion, in which, the number of state spaces exponentially
increases with verification time; thus, the problem interrupts
verification using model checking at runtime [30]. To solve
this problem, various techniques have been developed [38],
and a model abstraction method was proposed in RINGA.
However, RINGA has limitations, the first of which is related
to the design of a finite-state machine. SA-FSM provided rules
to design a finite-state machine to describe the self-adaptive
software, but the design process requires assumptions on how
to adapt to environmental changes. Therefore, if an unexpected
environmental condition occurs, the finite-state machine must
be redesigned.

2) Cache-Based Model Abstraction: A method to enhance
the finite-state machine abstraction is introduced in this sec-
tion. RINGA has limitations in terms of the abstraction
performance of finite-state machines. The limitation is closely
related to computing power; thus, applying RINGA to IoT
devices with low computing power is challenging. To over-
come this limitation, cache-based model abstraction has been
proposed [24]. The cache-based method significantly reduced
not only the abstraction time but also the verification time.
Additionally, the cache-based method required less comput-
ing power than RINGA; thus, the method was applied in this
study to verify IoT systems at runtime.

3) Self-Adaptive Software Framework With Model
Abstraction for IoT: To apply self-adaptive software concepts
to IoT systems, a RINGA-based self-adaptive framework
was proposed [12], and the framework is called RINGA-IoT
for convenience in this study. A finite-state machine was
proposed in RINGA-IoT, and the finite-state machine was
based on SA-FSM. The finite-state machine was simplified by
the abstraction method in RINGA, and the abstracted model
was used to verify the designed IoT system. Additionally,
RINGA-IoT applied Nash equilibrium-based strategy extrac-
tion methods [11] to extract adaptive solutions. RINGA-IoT
provides rules to construct a finite-state machine to design
an IoT system with self-adaptive software concepts, but it
has some limitations. The finite-state machine in RINGA-IoT
has limitations in describing complex relations. In addition,
RINGA-IoT abstracts the finite-state machine using the
abstraction method in RINGA; thus, it has the same limitation
that occurs in RINGA (i.e., computing power is required
to abstract complex models). Several IoT devices may have
limited computing power; thus, reducing computing power is
required.

D. Self-Adaptive Software in IoT

In this section, recent studies that focus on self-adaptation
for IoT-based systems and various research topics (e.g., archi-
tecture, algorithm, system, or framework) are introduced.
Various IoT studies focusing on software-based approaches for
self-adaptive systems have been conducted. Andrade et al. [5]
proposed a self-adaptive IoT infrastructure to support var-
ious facets, and they focused on 1) contextual discovery
of smart objects; 2) context awareness and managers; and
3) the self-adaptation process. The infrastructure consists of
existing solutions (i.e., CoAP-CTX [57], LoCCAM [58], and
SUUCCEEd [59]). The framework follows the MAPE-K loop
(i.e., control, verification, and execution). In the infrastruc-
ture, LoCCAM is used to discover IoT objects and to manage
context. Finally, SUCCEEd is used to control adaptation in
IoT systems by considering the context. As proof of concept,
the infrastructure applies smart buildings with embedded sen-
sors and actuators for efficient use of resources, detection of
emergencies, and optimization of processes. A comprehensive
architecture was proposed by Serhani et al. [8] and an archi-
tecture to integrate IoT workflow specification, orchestration,
monitoring, prediction, and adaptation was developed. The
IoT workflow denotes processes to handle IoT data, including

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SELF-ADAPTIVE FRAMEWORK WITH MASTER–SLAVE ARCHITECTURE FOR INTERNET OF THINGS 16475

the collection, analysis, and automated decision processes.
Therefore, the architecture focuses on workflow interoperabil-
ity, Quality-of-Service (QoS) requirements, workflow orches-
tration, and execution with IoT data in the cloud infrastructure.
Various tools, programming languages, and application pro-
gramming interfaces (APIs) have been introduced that may be
used in cloud-based IoT environments. In addition, a health
IoT example was applied to demonstrate how the architec-
ture operated with workflows. In this example, adaptation
algorithms are introduced to show how workflows are auto-
mated and optimized in the proposed architecture. However,
the architecture mainly focuses on describing the orchestration
of workflow; thus, general algorithms or methods for self-
adaptation are insufficient. Muccini et al. [21] presented an
IoT distribution pattern with self-adaptation, and the patterns
and self-adaptation were combined with respect to their spe-
cific characteristics. In addition, an IoT modeling framework
for an emergency handling system based on the MAPE loop is
proposed, and the framework is simulated with an IoT-based
forest monitoring system. Ariza et al. [52] proposed an adap-
tive IoT architecture for managing dynamic adaptation. The
architecture focuses on two challenges: 1) resiliency to tran-
sient IoT devices and 2) the inclusion of new IoT devices. To
solve these challenges, ontology is applied to represent domain
knowledge (i.e., definitions of services and devices). In addi-
tion, matching and update algorithms have been proposed to
support device management. The architecture is applied in a
sustainable urban drainage system case study that monitors
the reduction of water in nature to prevent negative impacts
in urban areas. A goal-driven architecture and a MAPE-K
loop-based process to deploy IoT nodes in Edge-Cloud envi-
ronments have been proposed [6]. In the architecture, the
goals are described as ontology, and the self-adaptive pro-
cess supports deployments of the IoT system to achieve user
goals (i.e., requirements from users). The goal-driven archi-
tecture was simulated in a smart home and smart building
scenarios. An IoT network architecture was proposed using
an adaptive control loop and blockchain [13]. The architec-
ture focuses on the block flow between IoT devices and the
blockchain. A self-adaptive control algorithm was proposed
to improve the efficiency, and the loop consisted of mon-
itoring and control processes. Shin et al. [14] developed a
dynamic adaptive software-defined network (SDN) configura-
tion approach for IoT environments, and the approach was
named DICES. The DICES consists of a feedback loop (i.e.,
monitor, analyze, compute, and apply). In addition, a search
algorithm was proposed to minimize network link utilization,
reconfiguration cost, and transmission. DICES was simulated
in an IoT-enabled national emergency management system,
and the results showed an efficiency of adaptation to resolve
congestion.

In addition, hardware-based approaches also exist for IoT
technologies. Burger et al. [3] proposed an IoT framework to
support the development and deployment of distributed IoT
environments with adaptive hardware for continuous change,
and the framework was called the elastic IoT platform. The
elastic IoT platform focused on IoT hardware-based adap-
tation, and the embedded hardware was modeled using a

previous study (i.e., elastic node [53]). Based on the elas-
tic node, various factors (e.g., interaction scheme, computing
power, or data) were provided as a service, and the platform
provided flexibility and convenience to the hardware layer in
the edge and cloud using the provided factors. In addition,
a self-aware drone system was applied to show an efficient
elastic IoT platform. An access control middleware [20] was
presented for IoT, and the middleware was capable of adapting
changes. The proposed middleware has a dynamic adaptation
process of access control rules to satisfy the requirements
of the IoT environment. A hardware and software architec-
ture for designing dynamic reconfigurable IoT environments
was presented [15]. The architecture aims to remotely con-
trollable IoT nodes that are connected to sensor processing in
runtime with adaptation. The architecture presents the node
architecture, and the nodes are dynamically reconfigured in
an adaptive runtime manager (ADAM). The ADAM provides
an adaptive runtime management policy. With this policy,
ADAM performs the configuration of hardware and software
using messages from the designed nodes. The architecture
was tested using an electrocardiogram (ECG) monitoring
case.

Recently, various studies have applied machine learning for
self-adaptation in the IoT. Nawaratne et al. [7] proposed self-
evolving algorithms for data interoperability in IoT environ-
ments. They investigated the need for interoperable algorithms
to support IoT environments, and the investigation used real
data from the Metropolitan Fire Brigade (MFB) in Victoria,
Australia. The algorithms focused on three requirements for
IoT environments (i.e., unsupervised self-learning capability,
self-generating to the environment, and incremental learn-
ing). To accomplish the self-evolving algorithms, unsupervised
machine learning algorithms have been applied: growing self-
organizing map (GSOM) [54] and incremental knowledge
acquiring self-learning (IKASL) [55]. In addition, the self-
evolving algorithms were evaluated with a video surveillance
environment. Van Der Donckt et al. [16] presented a deep-
learning-based approach for adaptation space reduction, and
the approach was named DLASeR. DLASeR focused on the
analysis process in the MAPE-K loop; thus, it focused on ana-
lyzing possible adaptation options and ranking the options.
The DLASeR consists of two steps. The first step is to reduce
the adaptation spaces to generate a threshold using a deep
neural network (DNN), and the second step is to generate a
rank to find the optimization goal using a regression DNN.
DLASeR applies a self-adaptive exemplar that provides IoT
network-related examples and is named DeltaIoT [56]. A
MAPE-K loop-based self-adaptive architecture with the coop-
eration of machine learning and model checking has been
proposed [17], [18]. To accomplish self-adaptation, reinforce-
ment learning is applied to select adaptation patterns, and
probabilistic model checking is used to verify the feasibil-
ity of the adaptation with respect to QoS requirements. In
addition, the adaptation results are provided for reinforce-
ment learning to improve future adaptations. The architecture
was evaluated in scientific exhibition events, and its efficiency
was demonstrated. Pauna et al. [19] presented a self-adaptive
honeypot system to detect and prevent malicious attempts in

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

16476 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 17, 1 SEPTEMBER 2022

TABLE I
COMPARISON OF PREVIOUS SELF-ADAPTIVE RESEARCH

IoT environments. The honeypot system applied reinforce-
ment learning, which is deep Q-learning, to generate long-term
rewards for baiting attackers.

Each of these studies includes distinct characteristics with
various approaches in different target IoT environments.
Therefore, it is difficult to perform quantitative analysis; thus,
we provide Table I for summarization and comparison to
show the characteristics of the self-adaptive research for IoT.
In this study, we focused on modeling IoT systems with a
master/slave architecture based on RINGA [10]. In addition,

cache-based model checking [24] is applied to enhance run-
time verification performance. The details of the proposed
approach are described in Section III.

III. SELF-ADAPTIVE FRAMEWORK WITH MASTER–SLAVE

ARCHITECTURE FOR IOT

The initial research called RINGA [9], [10] provides a self-
adaptive framework and is applied in IoT environments [12].

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SELF-ADAPTIVE FRAMEWORK WITH MASTER–SLAVE ARCHITECTURE FOR INTERNET OF THINGS 16477

Fig. 2. Overview of the proposed framework with master–slave architecture.

However, previous research required a large amount of com-
puting power, and thus, a cache-based model-checking method
was employed to reduce the computing power for not only
model abstraction but also runtime verification [24]. In addi-
tion, the previous IoT study [12] generates models that
only reflect host-side views, and it has the same limitation
as RINGA. To solve the limitations of previous research,
we proposed a self-adaptive framework with a master–slave
model [60] and a cache-based mechanism [24].

A. Overview

The proposed self-adaptive framework consists of two lay-
ers with shared knowledge. The layers consist of 1) a master
layer and 2) a slave layer. Fig. 2 shows an overview of the
proposed framework. First, shared knowledge (i.e., the right
side of Fig. 2) saves and manages various factors that are used
in the entire process of the framework. The details of the data
that exist in the shared knowledge are described below with a
description of the master and slave layers.

The user manages the overall IoT system and checks the
system status using information from the shared knowledge.
In addition, the user can provide additional information that
cannot be extracted or deduced using the information from IoT
devices. For example, if there is a sensor to detect environ-
ments (i.e., light intensity), but the requirements are not set,
the user can set satisfiable ranges (i.e., 120–140 lux).

The slave layer consists of sensors and actuators. The sensor
is an IoT device that measures one or more physical enti-
ties and outputs digital data that can be transmitted over a
network [2]. The actuator is an IoT device that changes one
or more properties of physical entities based on input val-
ues [2]. Both devices can only perform simple operations and
do not operate alone; therefore, they require commends from
the master layer to be operated harmoniously in an IoT system.

The master layer is responsible for modeling and managing;
thus, the master executes the overall modeling and adaptation
algorithms. Therefore, a device that performs operations in
the master layer is a host device. The modeling phase consists

of three parts: 1) collecting; 2) modeling; and 3) abstracting.
The collecting process collects slave devices (i.e., sensors and
actuators) and deduces the potential requirements from the
collected sensors. The requirements are assumed to be deter-
mined by the existence of sensor devices because checking
the status of the requirements requires more than one sen-
sor. For example, if there is a light and humidity sensor, the
potential requirement may be the humidity and light density
of a physical area. However, user intervention is required to
confirm the suitability of potential requirements. In addition,
the collection process recognizes various relationships among
the sensors, actuators, and requirements. Based on these rela-
tionships, a finite-state machine is generated to design the
IoT system in the modeling process based on these relation-
ships. The details of the finite-state machine are described
in Section III-B. In the abstracting process, the finite-state
machine describing the IoT system is abstracted as a sim-
plified finite-state machine using cache-based abstracting [24]
(see Section II-C2), and the simplified model is used to verify
the IoT system at runtime. The reason for the abstraction is to
prevent state explosion problems and enhance the verification
performance at runtime. The data generated in the modeling
phase are saved and managed in a shared database (i.e., the
right side of Fig. 2), such as finite-state machines describ-
ing the IoT system, abstracted finite-state machines, sensors,
actuators, requirements, and relationships.

The managing phase is responsible for supervising the
IoT system at runtime. The managing phase consists of the
MAPE loop, which is a prominent feedback loop used in
the adaptation process in the self-adaptive software and auto-
nomic computing [50]. The loop consists of four processes:
1) monitoring; 2) analysis; 3) planning; and 4) execution. The
monitoring process is responsible for reading and updating
the internal and external environments. Therefore, the pro-
cess detects a change in the system’s status and collects data
from the slave devices. The monitored data are updated in the
shared database and are used in other processes. The analysis
process is responsible for verifying the status of requirements
(i.e., each requirement is satisfied or unsatisfied) and to check

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

16478 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 17, 1 SEPTEMBER 2022

Fig. 3. Finite-state machine to design sensor device.

possible adaptive strategies in a short time. Verification is
performed with the abstracted finite-state machine that is gen-
erated in the modeling phase and cache mechanism [24]. In
addition, shared data are used in this process, and the analyzed
results are updated. The main purpose of the planning pro-
cess is to find the optimal solution for adaptation. Therefore,
if there are unsatisfied requirements, the process evaluates
each possible adaptive strategy and selects the optimal solution
using the strategy score method [11]. In addition, the optimal
solution is saved in the shared data and is used in the execut-
ing process. The executing process is responsible for executing
the actuators, and the executions are determined as the optimal
solution. After the execution process, the loop continues, and
the monitoring process is executed.

B. Finite-State Machine Design in Modeling Phase

In this section, the details of the finite-state machine for
designing the master and slave layers are described. Finite-
state machine modeling is conducted in the modeling phase;
thus, this section describes the details of the modeling phase.

1) Finite-State Machine Model for the Slave Layer:
The slave layer is responsible for the physical operation
in IoT environments and systems. In international standards
(i.e., ISO/IEC 20924:2018 Information technology—IoT—
Vocabulary [2]), the term “IoT device” is defined as an entity
of an IoT system that interacts and communicates with the
physical world through sensing or actuating. Therefore, the
slave layer is related to the IoT device design, and IoT devices
consist of sensors and actuators [2]. As denoted by the stan-
dard, both devices can connect a network by themselves in
this study.

The sensor device can measure the properties of one or more
physical entities and generate outputs as digital data, and the
result can be transmitted via a network [2]. Therefore, the
input data of the sensor device are requests for sensing data,
and the output is the sensor data if it is correctly operated. We
proposed a general finite-state machine to design the sensor
and named it SN-FSM. Fig. 3 shows SN-FSM, which can be
expressed as a tuple (S,→, Sinitial, AP, L), where

1) S is a set of states;
2) Sinitial is an initial state;

Fig. 4. Finite-state machine to design actuator.

3) the states are classified into five types {Sinitial, Sread,
Scheck, Ssuccess, Sfail} ⊆ S;

4) Ssuccess and Sfail are end states;
5) →⊆ S × S is the transition relation, and it is classi-

fied into five types {Sinitial ×Sread, Sread ×Ssuccess, Sread ×
Scheck, Scheck × Sread, Scheck × Sfail};

6) AP is a set of atomic propositions;
7) L : S → 2AP is a labeling function (2AP denotes the

power set of AP).
As indicated by the SN-FSM tuple definition, the finite-state

machine compromises five states and five transitions. The state
set and transitions include the following:

1) Initial state (Sinitial) is an initial state.
2) The reading sensor (Sraed) reads the sensor properties. If

the property is successfully read, the output is sent to the
master layer (Sread × Ssuccess). However, if the reading
sensor fails, it is transmitted to the checking attempt
state (Sread × Scheck).

3) Checking attempt state Scheck checks the attempts of the
sensing property, and if the maximum attempts are not
exceeded, it reaches the reading sensor again (Scheck ×
Sread). In addition, if the attempt is exceeded, it reaches
the fail state (Scheck × Sfail).

4) Success Ssuccess and fail Sfail states are the end states.
The success state sends property values, and the failure
state sends the failure report.

As depicted in Fig. 2, the results are saved in the shared
database and used in various processes in the managing phase.
Note that the SN-FSM is designed for general purposes to
describe sensor devices as a finite-state machine; thus, it can
be expanded by the different purposes of the sensor.

The actuator is an IoT device that changes one or more prop-
erties of the physical entity as a response to a valid input [2].
Therefore, an IoT system sends an operation as input to an
actuator, and the actuator sends the results as output to the
IoT system. A finite-state machine was proposed to design
the actuator and was named ACT-FSM. Fig. 4 shows the
ACT-FSM, which can be expressed as a tuple (S, →, Sinitial,
AP, L), where

1) S is a set of states;

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SELF-ADAPTIVE FRAMEWORK WITH MASTER–SLAVE ARCHITECTURE FOR INTERNET OF THINGS 16479

2) Sinitial is an initial state;
3) the states are classified into nine types {Sinitial, SchkReq,

Sinc, Sstable, Sdec, SchkAct, SchkAtmp, Ssuccess, Sfail} ⊆ S;
4) Ssuccess and Sfail are end states;
5) →⊆ S × S is the transition relation, and it is classified

into five types {Sinitial × SchkReq, ScheReq × {Sinc, Sstable,
Sdec}, {Sinc, Sstable, Sdec} × SchkAct, SchkAct × {SchkAtmp,
Ssuccess}, SchkAtmp × {SchkReq, Sfail}};

6) AP is a set of atomic propositions;
7) L : S → 2AP is a labeling function (2AP denotes the

power set of AP).
Based on the ACT-FSM definition, the finite-state machine

comprises 9 states and 11 transitions. The details of the states
and transitions are described as follows.

1) Initial state (Sinitial) is an initial state and receives the
input value.

2) The checking request state (SchkReq) verifies the input
value, and the status is transited to the activation-related
states by the input value (ScheReq × {Sinc, Sstable,
Sdec}).

3) The activation-related states (Sinc, Sstable, Sdec) are
related to the physical operation of an actuator; thus,
the operations are executed in these states. After the
operation status is reached to check the operation ({Sinc,
Sstable, Sdec} × SchkAct). The purpose of the proposed
finite-state machine is to provide a general design for
the actuators. Therefore, the activations are only clas-
sified into three types of operations, but they can be
expanded by the characteristics of an actuator.

4) The checking activation status (SchkAct) verifies that the
operations are executed correctly. The operation is exe-
cuted without error, and the status reaches success status
(SchkAct × Ssuccess). However, if the operation is executed
with error, the status is translated to check the attempt
status (SchkAct × SchkAtmp).

5) The checking attempts status counts the attempt of oper-
ations, and if the attempt exceeds a threshold, the status
is translated to a failed state (SchkAtmp × Sfail). If the
attempt does not exceed the threshold, the operation is
retried (SchkAtmp × SchkReq).

6) Success (Ssuccess) and fail (Sfail) states are the end states.
Both states send the results, and the results are saved in
the shared data.

The finite-state machines in the slave layer describe each
device in an IoT environment. In this study, it is assumed
that IoT devices have finite-state machines to describe them-
selves, and the finite-state machines are sent to the master
in the first pairing. In addition, finite-state machines are
used in the master layer for system modeling and runtime
verification.

2) Finite-State Machine Design for the Master Layer: The
master layer is related to an IoT system that provides the func-
tionalities of IoT [2]; thus, a finite-state machine is required
to design overall IoT systems, check system status, and ver-
ify the system at runtime. To accomplish this, a finite-state
machine is designed with the collected slave devices and
requirements. The finite-state machine is named ML-FSM and
can be expressed as a tuple (S, →, Sinitial, AP, L), where

1) S is a set of states;

2) Sinitial is an initial state;
3) the states are classified into ten types: {Sinitial, Sread,

SrSuccess, SrFail, Ssat, SunSat, Sstrategy, Sact, SaSuccess, SaFail}
⊆ S;

4) SrSuccess, SrFail, Ssat, SunSat, SaSuccess, and SaFail are end
states;

5) →⊆ S × S is the transition relation, and it is classified
into nine types: {Sinitial × Sread, Sread × {SrSuccess, SrFail},
SrSuccess × {Ssat, SunSat}, SunSat × Sstrategy, Sstrategy ×
Sact, Sact × {SaSuccess, SaFail}};

6) AP is a set of atomic propositions;
7) L : S → 2AP is a labeling function (2AP denotes the

power set of AP).
The ML-FSM comprises seven states and seven transi-

tions, and the details regarding the states and transitions are
described in Fig. 5 and are given as follows:

1) The initial state (Sinitial) is the initial state and receives
the input value. The initial state reaches each read sensor
(Sinitial × Sread).

2) The read sensor state (Sread) is a set of states related
to the slave layer (i.e., sensors); thus, it is respon-
sible for reading and checking data from sensors.
Therefore, each sensor state can be replaced with a
related SN-FSM to describe the detailed sensor activ-
ities. The data from sensors are used to check the
requirements, and the status is reached to check the
requirement states (i.e., the next transition is decided
from the results of the SN-FSM). However, if a sen-
sor successfully returns information, it reaches the read
success state (SrSuccess). Conversely, if a sensor returns
fail, the status is transferred to the read fail states
(SrFail).

3) The read success state (SrSuccess) and read fail state
(SrFail) are end states, and these states can verify which
sensor is successfully returned information and not. In
addition, reaching both states is exclusive because the
sensor cannot be successful and fail. The read success
state is a set of states that denotes the sensors that
return information successfully. The next transition is
decided by the results from sensors; thus, if the require-
ment is satisfied, the status reaches a satisfied state
(SrSuccess × Ssat). In addition, a sensor may exist to
collect information that is not related to requirements;
thus, the status can be ended at the read success state
in this case. In addition, if the requirement is not satis-
fied, it reaches an unsatisfied state (SrSuccess × SunSat).
However, the transition from the read success state to
the checking requirements state is one-to-many because
some sensors may detect multiple factors related to var-
ious requirements. However, the read fail state (SrFail) is
a set of states that fails to sense the environment; thus,
the transition ends.

4) Satisfied state (Ssat) and unsatisfied state (SunSat) are end
states, and these states can verify which requirements are
satisfied and which are unsatisfied. If the status reaches
unsatisfied states, the status has to be translated to extract
strategies for adaptation (SunSat × Sstrategy). However, if
the status reaches satisfied requirement states, adaptation
is not required.

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

16480 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 17, 1 SEPTEMBER 2022

Fig. 5. Finite-state machine to design an overall IoT system.

5) The reaching strategy state (Sstrategy) denotes that there
are unsatisfied requirements; this system has to generate
adaptation strategies and find the most optimal solution
to accomplish the unsatisfied requirements. The game
theory-based strategy extraction method [11] was used
to find the strategies and the most optimal solution.
However, the most optimal solution contains orders to
execute actuators; thus, the status translates into several
activate states (Sact) to execute actuators.

6) The activation state (Ssat) is related to the slave layer
(i.e., actuators); thus, it can be replaced with the related
ACT-FSM. Each activation state operates the related
actuators based on the most optimal solution, and the
operation results affect the decision related to the next
transition. The status is translated to the success state
(Ssat × SaSuccess) if the operation of the actuator is suc-
cessfully operated, but it reaches a failed state (Ssat ×
SaFail) if the operation fails.

7) Success and fail states (SaSuccess, SaFail) are end
states, and these states are related to the verification
results of the adaptive strategy execution. If the oper-
ation is successfully completed, the success state is
reached; if the failure states are reached, the operation
fails.

As described previously, the ML-FSM design describes an
overall IoT system, and the ML-FSM is designed based on
the collected slave devices (i.e., SN-FSM and ACT-FSM).
Therefore, if the new slave device is added to the system,
the ML-FSM must be updated, but only a few transitions are
required. However, the ML-FMS is constructed for an IoT
system, and then the designed finite-state machine is abstracted
for runtime verification. The details of the abstracted model
are described in Section III-B3.

3) Finite-State Machine Design for Verification at Runtime:
In this section, a finite-state machine is described that is used
to verify the IoT system at runtime. The finite-state machine
is an abstracted finite-state machine extracted from the ML-
FSM, and the cache-based abstraction method [24] is applied
to the abstraction (see Section II-C2). The abstracted master

layer finite-state machine, called AML-FSM, is expressed as
a tuple (S, →, Sinitial, AP, L), where

1) S is a set of states;
2) Sinitial is an initial state;
3) the states are classified into seven types: {Sinitial,

SrSuccess, SrFail, Ssat, SunSat, SaSuccess, SaFail} ⊆ S;
4) SrSuccess, SrFail, Ssat, SunSat, SaSuccess, and SaFail are end

states;
5) →⊆ S × S is the transition relation, and it is classi-

fied into six types {Sinitial × {SrSuccess, SrFail, Ssat, SunSat,
SaSuccess, SaFail};

6) AP is a set of atomic propositions;
7) L : S → 2AP is a labeling function (2AP denotes the

power set of AP).
Fig. 6 shows AML-FSM. As described in the AML-FSM

tuple, its states are end states of ML-FSM except for the ini-
tial state; thus, the definitions of the end states are the same
as those for ML-FSM (i.e., the details of the states of AML-
FSM are skipped because they are the same as those of the
states of ML-FSM). The purpose of the abstraction process
(i.e., the abstracting process in Fig. 2) is to find reachable
paths from the initial state to the end states of the ML-FSM.
Therefore, each transition in AML-FSM connects the initial
states and each end state, and the transitions are composed of
simple logical equations or mathematical equations. Therefore,
the status of AML-FSM can be determined by only calculat-
ing the equations, which significantly reduces the verification
time. However, the AML-FSM is used to verify the IoT system
at runtime, and the details of the runtime verification are
described in Section III-C.

C. Verification With Model Checking at Runtime

In this section, the runtime verification process is described
in detail (i.e., the managing processes in the master layer).
The verification process consists of a MAPE-K loop, which
is generally applied in the self-adaptive software [50]. The
details of each step are as follows.

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SELF-ADAPTIVE FRAMEWORK WITH MASTER–SLAVE ARCHITECTURE FOR INTERNET OF THINGS 16481

Fig. 6. Finite-state machine for verification at runtime.

1) Monitoring Process: The monitoring process is the first
step in the verification process. The monitoring process is
responsible for checking and updating data from the slave
layer (i.e., sensors and actuators) and the master layer (i.e.,
the IoT system). The collected data are saved in the shared
database (i.e., shared knowledge in MAPE-K). In addition, if
a new slave device is detected, the system model has to be
updated; thus, the monitoring process performs the modeling
phase (i.e., the new device is added to the previous ML-FSM,
and the ML-FSM is abstracted). After the monitoring process,
the analysis process is performed.

2) Analysis Process: The analysis process uses an
abstracted finite-state machine form (AML-FSM) to verify
the system’s status. As described previously, the reason for
using AML-FSM for verification at runtime is that AML-FSM
transitions are simplified equations; thus, the reachable paths
can be calculated quickly at runtime. However, performance
experiments to demonstrate the effectiveness of the proposed
approach are described in Section IV.

As described in Section III-B3, AML-FSM defines reacha-
bility from the initial state to the states related to requirements
(i.e., satisfied and unsatisfied) and adaptation (i.e., success and
fail). Therefore, the results of requirement-related states can
verify which requirements are satisfied or unsatisfied. If the
status reaches a satisfied state, a requirement related to the
state is satisfied. In addition, if the status reaches an unsatis-
factory state, a requirement related to the state is unsatisfied. A
requirement cannot be both conditions; thus, the reachability
to the satisfied and unsatisfied states is exclusive for the same
requirement. Similarly, the reachability of adaptation-related
states verifies that the execution of adaptation strategies is
successfully performed. The reaching success state (Ssuccess)
denotes that an adaptation strategy is successfully performed,

but if it reaches the fail state (Sfail), an adaptation strategy
failed to execute. In addition, both end states are exclusive.
However, reaching the success state guarantees that an adap-
tation is successfully performed, but it is not guaranteed that
an adaptation strategy changes the unsatisfied requirements to
satisfy the conditions. Therefore, the master layer (i.e., the host
of the IoT system) must continually verify the requirement
conditions.

With verification results from AML-FSM, the system can
analyze 1) which requirements are required to adapt and 2)
which adaptation strategies are successfully operated. The ana-
lyzed results are updated in the shared database. After the
analysis process, the planning process was executed.

3) Planning Process: The proposed approach applies a
game theory-based strategy extraction method [11], [12]. The
method uses the Nash equilibrium, which is a decision-making
theorem within the game theory, and the strategy extraction
method showed a reasonable amount of time with complex IoT
environments. The details of the strategy extraction method are
beyond the scope of this article; thus, the method is briefly
described with definitions of game theory. In the game theory,
players can select several strategies that can affect other play-
ers’ choices. Therefore, a payoff matrix is required to check
the influences between players’ strategies, and the optimal
strategy is extracted based on the payoff matrix. The goal of
the optimal strategy is to achieve as many players’ satisfaction
as possible. In addition, some rules are required to determine
the optimal solution using the payoff matrix.

In the proposed approach, the analysis process extracts can-
didate strategies using a game-theory-based method and data
from the shared database. A situation that requires adaptation
is defined as a game. Satisfied requirements are not required
to be adapted; thus, unsatisfied requirements are players of
a game. In addition, possible actions that may be a solution
to unsatisfied requirements are the strategies of the unsatis-
fied requirements (i.e., possible executions of actuators related
to the unsatisfied requirements are set as strategies of the
player). Then, the analysis process generates a payoff matrix
and extracts candidate strategies using data from the shared
database.

For example, there are two requirements for sensors: 1) light
intensity and 2) humidity. Both requirements are not satisfied:
the requirements are lower than the satisfaction criteria, and
the outdoors have brighter light intensity and higher humidity
than indoors. The actuators are a lamp and windows. The lamp
can affect the light requirement by adjusting the brightness,
and the windows operation can affect both requirements. The
game is to determine the most appropriate strategy for both
requirements, and players are the requirements. In addition, the
possible action of the actuators can be solutions, and the results
are denoted using the payoff. The results of the game (i.e., the
operation of the actuators) are “may be satisfied by operating
actuators” and “not affected by operating actuators,” and pay-
offs are 1 and 0, respectively. In this situation, the payoff table
is generated, as shown in Table II, and the results denote the
payoffs of the requirements. The former is the payoff of the
light requirement, and the latter is the payoff of the humidity
requirement. In the table, there are two candidate strategies

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

16482 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 17, 1 SEPTEMBER 2022

TABLE II
EXAMPLE OF PAYOFF MATRIX

that can perform adaptation: 1) opening windows and turning
on the lamp and 2) only opening the windows. In addition,
both candidate strategies have the possibility to satisfy the
requirement; thus, they are in Nash equilibrium. Therefore,
to determine the optimal solution, an evaluation method is
required to evaluate the candidate strategies (Table II).

An equation to determine the most optimal solution is
applied [11]. The equation consists of three major conditions
to evaluate the strategies.

1) The number of satisfied requirements (SR) is the num-
ber of requirements that can be satisfied by executing a
strategy. A strategy that satisfies multiple requirements
is preferable.

2) The number of related requirements (RR) is the number
of requirements that can be affected by strategy execu-
tion. A strategy that affects fewer related requirements
is preferable. For example, if windows are opened to
adapt to brightness, other requirements (i.e., humidity,
temperature, and dust density) may be affected.

3) The number of actuators (AD) is the number of devices
that operate under an adaptive strategy. Smaller values
are preferable for AD. For example, if there are several
strategies, and they may adapt the same requirements,
then the strategy resulting in the operation of fewer ADs
is preferable.

The equation used to evaluate adaptive strategies using SR,
RR, and AD is described as follows:

α

{
log

(
SR + 1

RR + 1
+ 1

)}
+ β

{
log

(
1

AD + 1
+ 1

)}
. (1)

The first term (i.e., {log([(SR + 1)/(RR + 1)] + 1)})
is related to requirements; thus, requirement-related fac-
tors (i.e., SR and RR) are used. The second factor (i.e.,
{log([1/(AD + 1)]+1)) is related to the operation of actuators;
thus, an actuator-related factor (i.e., AD) is applied. Both terms
use a logarithm for normalization, and 1 is added to prevent an
infinite result. The coefficients (α and β) give weights of two
terms, and their summation is 1. In the example scenario, there
are two candidate strategies, and each SS is calculated as 0.41
(i.e., SS of opening windows and turning on the lamp) and
0.5 (i.e., SS of only opening the windows). Note that α and
β are set to 0.5. Finally, the optimal solution of the example
is extracted as “only opening windows.” Both strategies may
satisfy the requirements, but the optimal solution operates by
running fewer actuators.

With candidate strategies extracted using the game theory-
based method, the planning process selects the most optimal
solution (i.e., the highest score strategy from the candidate
strategy). In addition, the data generated from the planning
process are saved in a shared database, and the optimal
solution is transferred to the execution process.

4) Executing Process: The executing process is responsible
for operating the actuators for adaptation. The operation is
performed based on the results of the planning process; thus, if
there is a strategy to adapt, actuators are executed as described
in the adaptive strategy. However, if there is no adaptation
strategy (i.e., all requirements are satisfied, or an adaptation
strategy is not extracted), the execution process maintains the
current status. The execution process is the end of the MAPE
Loop; thus, the loop continues after the execution process.

IV. EMPIRICAL EVALUATION

The proposed method was implemented as a prototype to
evaluate the model abstraction and verification performance.
The prototype was implemented using Java 15.0.4, and the
test device was compromised with Intel Core i7-10700K
(3.80 GHz and 8 cores), 32-GB memory, and Windows 10.
Experimental data were randomly generated, and the details
are described in Section IV-A. The results of the experiments
for model abstraction and runtime verification are described
in Sections IV-B and IV-C, respectively.

A. Experimental Data Set

To perform the experiment, experimental data were designed
to generate different IoT environments with a number of actu-
ators, requirements, and complexity. The experimental IoT
environment is compromised by four complexity factors, and
the details of the factors are described as follows.

1) The number of actuators (NA) is related to the complex-
ity of the actuator size. An IoT environment with larger
actuators is more complex than that with small actuators
if the other options are the same.

2) The number of requirements (NR) is related to com-
plexity with the requirement size. Similar to NA, it is
assumed that more requirements make a more complex
IoT environment if the other conditions are constant.

3) The additional affected requirement (AR) denotes the
requirements that are affected by the operation of single
actuators; for example, if an actuator is related to three
requirements (i.e., AR is 3), then the operation of the
actuator may affect the three related requirements. In
addition, increasing the AR can create more complex
IoT environments. However, as a default, an actuator
can affect only one requirement.

4) The proportion of actuators (PA) denotes the percentage
of actuators that have AR; thus, if PA is increased, then
the IoT environment is more complex.

Fig. 7 denotes an abstracted model to describe the relation-
ship between the complexity factors. In the figure, there are
n actuators and k requirements; therefore, NA and NR are n
and k, respectively. In addition, m actuators are included in
PA (i.e., PA is equal to m/n), and actuators included in PA are
associated with AR requirements. As a default, the remaining
actuators (i.e., n-m actuators) are connected to requirements
with one-to-one relationships. Based on the complexity fac-
tors, we generated three experimental environments, and each
data set was related to single complexity factors. The details
are described as follows.

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SELF-ADAPTIVE FRAMEWORK WITH MASTER–SLAVE ARCHITECTURE FOR INTERNET OF THINGS 16483

Fig. 7. Relationship between experimental factors for IoT complexity.

1) Experimental environment #1 (EE#1) is related to
increasing NA (i.e., 20–50); thus, other factors are fixed
(i.e., NR, AR, and PA are set as 10, 2, and 10%).

2) Experimental environment #2 (EE#2) is related to
increasing NR (i.e., 2–50); thus, other factors are fixed
(i.e., NA, AR, and PA are set as 50, 2, and 10%).

3) Experimental environment #3 (EE#3) is related to
increasing PA (i.e., 0%–30%); thus, other factors are
fixed (i.e., NA, NR, and AR are set as 50, 10, and 2).

Furthermore, we generated 100 environments with the same
factor values, but the connections between the requirements
and actuators were generated well randomly. Therefore, each
experimental IoT environment is different from the others (i.e.,
there are 100 different IoT environments with the same com-
plexity factor values). In addition, all requirements have at
least one connected actuator; thus, there is no requirement
that is not affected by the actuators. After the experimental
data setting, we performed model abstraction and verification
experiments, and the details and results are described in the
following section.

B. Experiment for Abstraction Performance

The experiments were performed to evaluate the model
abstraction and runtime performance. To evaluate the abstrac-
tion performance, the generated IoT environments were trans-
ferred to the model for the proposed approach and RINGA-
IoT [12], and then the abstraction processes were executed.
Figs. 8–10 show the results of the comparison between the
proposed approach and RINGA-IoT. Fig. 8 shows the results
obtained for the first experimental environment with increasing
number of actuators. Naturally, more actuators require more
time for model abstraction (i.e., RINGA-IoT has time from
2.8 to 111.4 ms, and the proposed method has time from 0.09
to 0.16 ms), but the cache-based method [24] is applied in the
proposed approach, which significantly reduces the abstraction
time. In addition, the proposed approach requires a reasonable
time for model abstraction.

The model abstraction results with EE#2 are shown in
Fig. 9. In contrast to the previous results, the model abstraction
from RINGA-IoT shows a tendency to decrease after rising.
This is because the model from RINGA-IoT is highly complex
when requirements and actuators are connected in a com-
plex manner. In addition, in the experimental environment,

Fig. 8. Results of model abstraction time with increasing actuators (NA).

Fig. 9. Results of model abstraction time with increasing requirements (NR).

Fig. 10. Results of model abstraction time with complexity (PA).

the number of actuators is fixed (i.e., 50); thus, the model
complexity decreases after increasing. The abstraction results
from the proposed approach are steadily increased from 0.23
to 0.29 ms because more cached data are required when the
requirements are increased. However, the results also showed
that the proposed approach has a more reasonable model
abstraction performance than the previous abstraction method.

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

16484 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 17, 1 SEPTEMBER 2022

Fig. 10 shows the results with increasing PA factor. As
described, the complexity factor is related to the percent-
ages of actuators that are related to many requirements;
thus, the results show that both abstraction methods require
more abstraction time when more complexity is required. The
time required for RINGA-IoT was 0.28–329.9 ms, and the
required time for the proposed approach was 0.16–0.21 ms.
The results show that the proposed approach is more practi-
cable than RINGA-IoT for the model-abstraction process. In
short, the overall results show that the proposed approach sig-
nificantly reduces the model abstraction performance because
the cache-based mechanism is applied, which helps reduce the
abstraction time.

C. Experiment for Runtime Verification Performance

In this section, experiments related to runtime verification
are described. For the experiments, the abstracted models that
were generated in the previous experiment (i.e., Section IV-A)
were used because the proposed approach and RINGA-IoT
required abstraction models for verification at runtime. In addi-
tion, for comparison with other model-checking tools (i.e.,
cadenceSMV [25], NuSMV [26], [27], and nuXmv [28], [29]),
the experimental IoT environments were transferred to other
model-checking languages. The other tools use the same FSM
model with the proposed approach; thus, performances to find
reachability from initial states to three types of end states
[i.e., n satisfies requirements (SR), m dissatisfies requirement
(DR), and k adaptable strategy (AS)] are measured. The reach-
ability is described using the intuitive semantics of temporal
modalities [30] as follows:

δ =
n∧

i=1

∃�SRi +
m∧

i=1

∃�DRi +
k∧

i=1

∃�ASi.

Symbols “∃” and “�” denote “exists” and “eventu-
ally,” respectively. In addition, “

∧
” indicates conjunction.

Therefore, “
∧n

i=1 ∃�SRi” will be true if all requirements are
satisfied, and all requirements are verified to find an answer
“
∧n

i=1 ∃�SRi” Finally, δ is required to check all requirements
and adaptable strategies, similar to the proposed approach.

Figs. 11–13 show the results of runtime verification. Fig. 11
shows the results for the first IoT experimental environment
(i.e., EE#1) with increasing actuators. Complete tools grad-
ually require more computational time for a more complex
model (the proposed approach requires a time from 0.09 to
0.16 ms), but RINGA-IoT increases rapidly when the IoT envi-
ronments become complicated. However, the figure shows that
the proposed approach requires the least computation time to
verify the model.

The runtime experiment results with increasing require-
ments are shown in Fig. 12. Except RINGA-IoT, the other
tools, including the proposed approach, required more time
when the requirements were increased. RINGA-IoT showed a
tendency to decrease after rising. The reason is the same as
that for the model-abstraction process, that is, the RINGA-IoT
model generates complex models (i.e., RINGA-IoT requires
more time to verify the complex model) when the actuators
affect several requirements; thus, it has a high computing time

Fig. 11. Results of verification time with increasing actuators (NA).

Fig. 12. Results of verification time with increasing requirements (NR).

Fig. 13. Results of verification time with complexity (PA).

with the NRs between 10 and 20. However, the proposed
approach required more time for verification in fields (i.e.,
requirement number is larger than 38), but the proposed
approach is more effective than RINGA-IoT from the over-
all perspective, including the model-abstraction process. In
addition, as depicted in Fig. 12, the proposed approach
shows better performance than the other model-checking tools
overall.

The results related to PA complexity are depicted in Fig. 13.
Naturally, the proposed approach required more time when the

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SELF-ADAPTIVE FRAMEWORK WITH MASTER–SLAVE ARCHITECTURE FOR INTERNET OF THINGS 16485

Fig. 14. Overview of the example application.

complexity was high (i.e., the proposed approach required time
from 0.7 to 1.07 ms), but the other tools provided monotonic
results. This is because the proposed approach and RIGNA-
IoT consider all possible paths to find reachability, but the
other tools terminate to find a reachable path if they find a
single reachable path. Therefore, if the PA complexity does
not affect the model-checking time in NuSMV, nuXmv, and
CadenceSMV. Nevertheless, the proposed approach is superior
to the verification of other tools.

In summary, the proposed approach shows reasonable veri-
fication results at runtime, and the overall results are better
than those of other model-checking tools. In addition, the
cache-based mechanism significantly reduced not only the
abstraction process but also the runtime verification time. In
addition, the experimental data set was generated as different
IoT environments with the four complexity factors; thus, the
data set was generated from a simple IoT environment to com-
plex IoT environments. Furthermore, the proposed approach
shows a stable verification time; thus, the proposed approach
can be applied to complex IoT environments with a stable
verification performance.

V. PROOF OF CONCEPT: IOT-BASED SMART GREENHOUSE

In this section, a small-scale IoT-based smart greenhouse
application is introduced to help understand the proposed
approach, and the application demonstrates the efficacy of the
proposed framework. The application comprises four scenarios
to verify and adapt to various situations.

A. Overview of IoT-Based Smart Greenhouse

In the example application, requirements and IoT devices
are collected during the modeling phase. There are two types
of requirements for cultivation: 1) rapidly changing require-
ments (i.e., intensity of brightness) and 2) gradually changing
requirements (i.e., humidity). The former can rapidly change
when the operation of a related device immediately affects the
environment. For example, the intensity of brightness imme-
diately changes when the lamp is turned on or off. In contrast,
in the latter, the operation of a related device results in gradual
changes. For example, humidity can be controlled by operat-
ing a humidifier; however, it can only be changed gradually.

In addition, the example application involves several IoT actu-
ators (i.e., lamps, humidifiers, and windows and sensors (i.e.,
illumination and humidity sensors). The lamp and humidifier
are actuators, and their operations directly affect environmen-
tal changes. The former can adjust brightness, and the latter
can increase humidity. In addition, windows can adjust bright-
ness and humidity by opening and closing them, but their
effects depend on the outside environment. Therefore, the
window directly changes the environment. Sensors sense the
intensity of brightness and humidity and are located indoors
and outdoors to collect information from different areas. All
slave devices are equipped with wireless modules; thus, it
is possible to communicate with a host device (i.e., mas-
ter layer) that collects information on IoT devices located in
its network range. In addition, a smartphone (i.e., Samsung
Galaxy S8, 2.31-GHz CPU clock with 8 core and 8-GB
memory) is a host device in this application. Subsequently,
a user can set the requirements based on the collected IoT
devices (i.e., slave devices), and the host device constructs an
ML-FSM and an AML-FSM to adapt to the environment at
runtime.

After the modeling phase, the managing phase is exe-
cuted following the MAPE loop. The host device collects
data from slave devices, such as indoor and outdoor humid-
ity, available devices, and requirements. After monitoring, the
host analyzes monitored data using AML-FSM, and then the
planning process extracts adaptive candidate strategies using
the game theory-based method and selects the most optimal
solution using the strategy score [11]. The optimal solution
is executed in the execution process, and the loop contin-
ues. However, it is assumed that the slave devices provide
information regarding related requirements and influences to
requirements. Therefore, the host device can generate a system
model that is automatically constructed using the definition of
ML-FSM that is used for verification at runtime. Fig. 14 shows
an overview of the application of this example.

In an example application, both requirements should be
satisfied under various environmental changes. Thus, four
scenarios were developed to assess the adaptability of the
proposed example application.

1) Scenario #1: The humidity requirement is satisfied dur-
ing the experiment, and the application is adapted to

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

16486 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 17, 1 SEPTEMBER 2022

Fig. 15. Components and deployment of sensor devices. (a) Outdoor sensor device. (b) Indoor sensor device.

Fig. 16. Components and deployment of actuators. (a) Lamp. (b) Humidifier. (c) Windows.

satisfy the light requirement under dynamic external
changes.

2) Scenario #2: The light requirement is satisfied during
the experiment, and the application is adapted to satisfy
the humidity requirement under stable external changes.

3) Scenario #3: Neither requirement is satisfied, but there
are strategies to satisfy both requirements.

4) Scenario #4: The light requirement is satisfied, but the
humidity requirement is not. A strategy is extracted, but
it causes environmental changes. Therefore, a strategy
should be extracted to adapt to light requirements.

Based on the example application and scenarios,
the application and IoT devices are implemented in
Sections V-B1 and V-B2. The results of these scenarios are
described in Section V-C.

B. Implementation

1) Arduino Implementation: The slave devices were imple-
mented using an Arduino. Table III lists the hardware compo-
nents required to implement the sensors and actuators. Fig. 15
shows the deployment of the sensor components. The Arduino
UNO board [61] is an open-source microcontroller board
based on the ATmega328P microcontroller. The Bluetooth
module HC-05 was connected to a wireless network. In addi-
tion, an illumination sensor and a humidity/temperature sensor
DHT 11 were used. The sensor devices were located indoors
and outdoors. Fig. 15 shows the components of the outdoor
sensor device. The indoor sensors [Fig. 15(b)] were similar to
the outdoor sensor device, except for an LCD panel that was
used to show the status of the requirements.

TABLE III
HARDWARE COMPONENT LIST

Fig. 16 shows the deployment of actuator components.
Similar to the sensor devices, the actuators were based on the
Arduino UNO board, and the HC-05 module was used. The
actuators were designed with an operating range of 0–255.
The minimum value of 0 implies that the device is turned off,
whereas the maximum value of 255 implies that the device
operates at full capacity. The actuators have different operat-
ing ranges, as described below. LED strips consisting of LED
lights were used to adjust the illumination, and the LED strips
were amplified using a transistor. Fig. 16(a) shows the compo-
nent deployment of the actuator for controlling lighting. The
operation range of the lamp was 5; thus, the lamp had 51
operation levels (i.e., 0, 5, 10, 15, . . . , 255). An ultrasonic
humidifier was used in the actuator for humidity control. The
ultrasonic humidifier was rated at 2 W, dc 5 V, and 350 mA.
Thus, the Arduino board was able to power the humidifier. A

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SELF-ADAPTIVE FRAMEWORK WITH MASTER–SLAVE ARCHITECTURE FOR INTERNET OF THINGS 16487

Fig. 17. Experimental environment with sensors and actuators.

Fig. 18. Screenshots of the implemented Android application. (a) Runtime.
(b) Setting requirement.

transistor was also used to amplify the humidifier. Fig. 16(b)
shows the component deployment of the actuator for humidity
control. The humidifier can be only on or off; thus, its opera-
tion range is 255 (i.e., the humidifier has an operation value of
only 0 or 255), and it has two levels of operation (i.e., 0 and
255). Two servo motors were used to control the window. They
lifted the window up and down. Fig. 16(c) shows the compo-
nent deployment of the window control device. The operation
range of the window was 45; thus, it had six operation levels
(i.e., 0, 45, 90, 135, 180, and 255).

A darkroom was constructed for the IoT environment
experiments using the sensors and the actuator deployments
(Fig. 17).

2) Android Implementation: An Android application was
implemented in the experiment. Fig. 18 shows the screenshots
of the implemented application, where buttons for various
operations are at the top of the screen. Users can manu-
ally add or delete IoT devices by touching. They can set the
threshold of a requirement by the “REQ SETTING” button
[Fig. 18(b)]. Requirements can be selected from the require-
ment list, and the standard threshold and its range are set

as integer numbers. Touching the “SELF-ADAPTIVE” but-
ton runs the self-adaptive loop. In addition, various types of
information appear under the button (i.e., number of con-
nected sensor, actuators, states, transitions, and requirements).
The textbox “System status” displays log data for the appli-
cation status, and “Sensor status” displays the log data for the
connected devices.

C. Implementation

A simulation with the Android application and Arduino
IoT devices was conducted based on the scenarios defined
in the previous sections. As mentioned earlier, the example
application collects IoT devices and constructs the ML-FSM
model in the early stage. Fig. 19 shows the ML-FSM modeling
results, and Fig. 20 shows the AML-FSM modeling results.
The ML-FSM consists of 57 states and 70 transitions, and
the states and transitions assign identity numbers (i.e., s0–s56
for states, and e0–e69 for transitions). Note that the identifica-
tion numbers are not described in Fig. 19 to avoid complexity.
In addition, the details of the slave device-related states (i.e.,
sensors and actuators) and transitions are abstracted as single
states. The slave device-related states were designed based
on definitions described in Section III-B1. After the design
of the ML-FSM, ML-FSM is abstracted using a cache-based
method [24]. Abstraction is performed to extract paths from
the initial state to the end states (i.e., SsSuccess, SsFail, Ssat,
SunSat, Ssuccess, and Sfail). In the abstraction process, the
cache-based equations are saved in the shared database, and
the data are used for verification at runtime.

Figs. 21–24 show the results for each scenario. The results
consist of three graphs: 1) sensed light values; 2) sensed
humidity values; and 3) actuator status. The first graph shows
the sensed light intensity collected by the indoor and out-
door sensors. The second graph shows the sensed humidity
collected by indoor and outdoor sensors. The green area in
the first and the second graphs indicate a satisfiable range of
requirements; thus, if the sensed value lies within the green
area, the requirement is satisfied, whereas if the sensed value
is outside the green area, the requirement is dissatisfied. Thus,
adaptive strategies are extracted when the sensed value is
outside the green area. The red areas indicate that the user
requirement is not satisfied, and thus, the system should adapt
to environmental changes. In each red area, a box contain-
ing related adaptation strategies and requirement status exists.
Table IV lists the extracted strategies and the requirement sta-
tuses for the example application. The last graph shows the
changes in the operation of the actuators using an adaptive
strategy. As mentioned in the previous section, actuators have
operation values between 0 and 255; however, the operational
ranges and levels are different.

Fig. 21 shows the results for Scenario #1. Under this sce-
nario, adaptation is required only for the light requirement (i.e.,
humidity is stable) owing to sudden changes in the external
brightness. As seen in Fig. 21, the application adapts between
0 and 4.5 s, and there are two strategies at that time (strat-
egy #1 in Table IV). The application selects a strategy that
increases the lamp brightness and then remains stable until

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

16488 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 17, 1 SEPTEMBER 2022

Fig. 19. ML-FSM for example application.

Fig. 20. Abstracted ML-FSM for example application.

24 s. The illumination of the environment suddenly increases
from 103 to 194 lx at 24 s. Initially, the application selects
strategy #4 and decreases lamp brightness. However, the appli-
cation does not adapt to environmental changes, and the lamp
brightness remains high until 30 s. Therefore, the applica-
tion selects a candidate strategy #4 (i.e., strategy #10) and
closes the window. The strategy is effective in reducing indoor
lighting; however, the reduction becomes excessive at 34.5 s.
Therefore, the application extracts strategy #2 and increases
lamp brightness until 40.5 s. The light requirement is main-
tained at 42 s. The illumination of the environment suddenly
decreases from 192 to 95 lx at 73.5 s; however, the applica-
tion requires no adaptation because the light requirement has
already been satisfied.

Fig. 22 shows the results for Scenario #2. Under this sce-
nario, adaptation is required only for the humidity requirement
(i.e., light is stable). Initially, the humidity requirement should
increase; thus, the application turns on the humidifier at 0 s
(i.e., strategy #7). However, humidity is a gradually changing
requirement, and adaptation proceeds gradually as the adaptive

strategy is executed. Thus, the application status is “WAIT”
from 1.5 to 229 s, t = 336 and 351 s. The humidity gradu-
ally increases and stabilizes after 352.5 s. Humidity is above
the requirement threshold at 610 s; hence, the application exe-
cutes adaptive strategy #8 (i.e., turns off the humidifier) and #9
(i.e., opens the window). As a result of the adaptive strategies,
humidity decreases and stabilizes from 628 to 744 s. Humidity
decreases at 745 s; accordingly, the application extracts strate-
gies (i.e., strategies #6 and #10) and executes them to satisfy
the requirement. Under strategy #6, the humidifier is turned on
to increase the indoor humidity. Under strategy #10, the win-
dow is closed to maintain indoor humidity. After adaptations,
the humidity is stabilized again after 831 s.

Fig. 23 shows the results for Scenario #3. Under this sce-
nario, adaptation is simultaneously required for both require-
ments, and there is a strategy for that. Initially, the light
requirement should be increased, and the humidity require-
ment should decrease. The application selects strategy #11 for
adaptation. Then, the humidifier is turned off, and the lamp
power is increased. After the execution of strategy #11, the

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SELF-ADAPTIVE FRAMEWORK WITH MASTER–SLAVE ARCHITECTURE FOR INTERNET OF THINGS 16489

TABLE IV
EXTRACTED STRATEGIES

application extracts new strategies to satisfy the requirements,
and strategy #2 is selected for adaptation. Under strategy #2,
the lamp power is increased, and the window is opened.
Opening the window increases the brightness and decreases
humidity because the outdoor light is brighter than the indoor
light, and the outdoor humidity is lower than the indoor humid-
ity. In addition, strategy #2 increases the lamp power, thus
increasing the indoor brightness. This shows that the extracted
strategy can adapt to a specific situation. The light requirement
was satisfied at 9 s, and the humidity requirement stabilized at
90 s. The illumination of the environment suddenly decreased
from 188 to 134 lx at 169.5 s. The application extracts a strat-
egy to adapt to environmental changes and increases the lamp
power (i.e., strategy #1). In addition, the application executes
strategy #1 at 310.5 and 324 s. The humidity decreases at
249 s; hence, the humidifier is turned on (i.e., strategy #6).
The application closes the window at 256.5, 258.5, 274.5, and
295.5 s to maintain the indoor humidity level. The humidity
requirement stabilizes after 297 s. This experiment shows that
the application can adapt not only for a single requirement but
also for multiple requirements.

Fig. 24 shows the results for Scenario #4. The light require-
ment is satisfied, but the humidity requirement is not satisfied
at 0 s. The application extracts strategies and turns off the
humidifier (i.e., strategy #8). The humidity requirement should
still be decreased; thus, strategy #9 is extracted and exe-
cuted (i.e., the window opens to decrease humidity). However,

Fig. 21. Results of scenario #1.

strategy #9 causes environmental changes with respect to the
light requirement because outdoor light affects the intensity
of the indoor brightness. Hence, the application extracts a
strategy for the light requirement, and strategy #5 is executed
from 13.5 to 54 s and 99 s. The illumination of the envi-
ronment suddenly decreases from 177 to 109 lx at 207 s. To
adapt to the environmental change, the application extracts
strategy #1, and the lamp power is increased from 207 to
250 s. Strategy #1 has a candidate strategy (i.e., the win-
dow is closed), but it affects humidity. Thus, the candidate
strategy was not selected at that time. At 370.5 s, the light
requirement should be increased; hence, the application exe-
cutes strategy #3 (i.e., the lamp power is increased, and there
is no candidate strategy). Humidity decreases at 306 s; hence,
the humidifier is turned on (i.e., strategy #6). The application

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

16490 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 17, 1 SEPTEMBER 2022

Fig. 22. Results of scenario #2.

closes the window at 313.5, 324, 328.5, 333, and 334.5 s to
maintain indoor humidity levels. The humidity requirement
stabilizes after 388.5 s. This experiment showed that an adap-
tive strategy could result in another adaptation. However, the
experimental results demonstrate that the application can adapt
to various environmental changes.

The experimental application shows an example of how the
proposed framework worked. In addition, the results of the
scenarios show that the proposed framework performs reason-
ably well with regard to adaptation to various environmental
changes. Overall, the results of the scenarios demonstrate the

Fig. 23. Results of scenario #3.

effectiveness of the proposed self-adaptive framework for IoT
at runtime.

VI. DISCUSSION

In this study, we propose a self-adaptive software frame-
work with a hierarchical finite-state machine for IoT systems.
The proposed framework yielded excellent results. However,
several problems must be solved before moving forward.
In this section, we present topics on the limitations of the
proposed framework and possible future work to overcome
these limitations.

Predefined information is required to apply the proposed
framework. For example, the framework can design a

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

LEE et al.: SELF-ADAPTIVE FRAMEWORK WITH MASTER–SLAVE ARCHITECTURE FOR INTERNET OF THINGS 16491

Fig. 24. Results of Scenario #4.

finite-state machine with information on IoT device capability,
and the relationships among sensors, actuators, and require-
ments are defined. Therefore, various types of information
must be defined and built-in IoT entities (e.g., sensors, actu-
ators, users, and requirements). In addition, it may cause
interoperability problems when applying the framework in
the IoT system. However, several international organizations
(e.g., ISO/IEC, IEEE Standards, ITU-T, oneM2M, IETF, and
OCF) have developed IoT-related standards, and various topics
related to interoperability exist (e.g., interworking, architec-
ture, syntactic, semantic, and framework) [1]. Therefore, to
overcome these limitations, international standards can be
applied to the proposed framework to solve the interoperability
and description of IoT entities.

It is the ultimate challenge that the self-adaptive system
is minimizing human involvement [50], and this topic has
been studied until recently [62]. The proposed framework
also requires human involvement. In the proposed framework,
the user checks the system status and provides additional
information in the proposed framework. In addition, the
proposed approach designs a finite-state machine (i.e., ML-
FSM) with predefined information. However, predicting all
interactions among various IoT entities is challenging, and
the prediction may differ, as expected. To minimize human
involvement and enhance system design, methods to extract
meaningful information, such as user requirements and rela-
tionships among IoT devices, are required. Therefore, it is
necessary to automatically generate the relationships among
IoT entities. To overcome this limitation, we planned to apply a
data-driven self-adaptive system with machine-learning-based
approaches.

In this study, we focused on IoT environments in which
IoT devices and requirements are closely related; thus, the
operations of the actuators can affect sensed values and
requirement satisfaction. Therefore, the framework was opti-
mized for a specific IoT architecture style. The proposed
framework is based on the master/slave architecture; thus,
the master layer (i.e., host device) can recognize relationships
among IoT devices and requirements and extract adaptation
strategies using the relationship. In addition, a master/slave
architecture is required for centralized management. However,
there are various IoT environments, and these environments
are considered to support self-adaptation. To overcome this
limitation, the proposed approach can be extended with differ-
ent IoT architecture styles [60] (e.g., centralized, information
sharing, top-coordinated, regional planning, master/slave, and
hierarchical), and this extension will be investigated in the
future.

Moreover, a greenhouse application was introduced (see
Section V) to show the working of the proposed framework.
The purpose of the application was to enhance the understand-
ability of the proposed framework (e.g., how modeling works,
how the model is generated, and how the adaptation is per-
formed). Therefore, the application was considered a simple
scenario because a complex scenario could interrupt the under-
standing of the proposed framework. However, in Section IV,
we performed an empirical evaluation, and the results showed
that the proposed approach can perform stable verification
within a reasonable time. In addition, the performance of
the game-theory-based strategy extraction shows a reason-
able amount of time with complex IoT environments in prior
research [11]. Therefore, the proposed approach can be applied
to complex IoT environments with complex relationships
between devices and requirements.

Cache-based model checking is a verification method in
the proposed framework, and this method provides reasonable
verification performance at runtime. For runtime verification,
the method mainly focused on the reachability of the finite-
state machine because the IoT model (i.e., AML-FSM) was
designed to verify the models with the reachability of specific
states. However, the other model checkers (i.e., CadenceSMV,
NuSMV, and nuXmv) are designed to consider not only

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

16492 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 17, 1 SEPTEMBER 2022

reachability but also other specifications with temporal log-
ics (i.e., CTL and LTL) that might affect the verification
performance time. The temporal logic provides richer expres-
sions of requirements; thus, the logic helps in the analysis of
IoT systems from various perspectives. Additionally, a more
detailed requirement description is helpful for rich expres-
sions of the requirements using temporal logic. To solve the
limitations related to the expressions of the IoT model and
requirements, we have plans to improve the design of the
finite-state machine by reflecting various IoT characteristics,
and the cache-based model-checking method will be enhanced
to a model checker with temporal logic.

VII. CONCLUSION

In this study, a self-adaptive software framework was
proposed using a hierarchical finite-state machine. The
proposed finite-state machine models are used to design and
verify IoT systems for IoT environments in which devices
and requirements are closely related. The proposed approach
consisted of two layers: 1) slave and 2) master. Both layers
were designed using a finite-state machine (i.e., ML-FSM, SN-
FSM, and ACT-FSM). The slave layer comprised two types
of IoT devices: 1) sensors and 2) actuators; thus, the slave
layer was responsible for sensing environmental factors and
operations. The master layer was responsible for designing
the model using the collected slave devices and managing the
designed IoT system at runtime. In particular, the master layer
included the MAPE loop for runtime verification and adapta-
tion. In the MAPE loop, the IoT system and environments
were monitored, and the IoT system was verified using the
designed modeling results (i.e., AML-FSM) and cache-based
model-checking method. If the verification results indicated
that there was an unsatisfied requirement, game-theory-based
strategy extraction was performed, and the optimal solution
was executed by operating the actuators.

Empirical experiments were performed, and the results high-
lighted the superiority of the proposed approach compared to
other tools (NuSMV, Cadence SMV, nuXmv, and RINGA).
In addition, the results showed that the proposed approach
can be applied to a complex IoT environment with a com-
plicated relationship between IoT devices and requirements.
In addition, the IoT-based smart greenhouse application was
implemented to demonstrate the efficacy of the framework in a
physical environment. The application results demonstrate the
effectiveness of the proposed framework. Additionally, a dis-
cussion is presented which includes the limitations and future
work. In the future, the proposed framework will be enhanced
to address the discussed limitations.

REFERENCES

[1] E. Lee, Y.-D. Seo, S.-R. Oh, and Y.-G. Kim, “A survey on standards for
interoperability and security in the Internet of Things,” IEEE Commun.
Surveys Tuts., vol. 23, no. 2, pp. 1020–1047, 2nd Quart., 2021.

[2] Information Technology—Internet of Things (IoT)—Vocabulary,
ISO/IEC Standard 20924:2021, Dec. 2018.

[3] A. Burger, C. Cichiwskyj, S. Schmeißer, and G. Schiele, “The elastic
Internet of Things—A platform for self-integrating and self-adaptive
IoT-systems with support for embedded adaptive hardware,” Future
Gener. Comput. Syst., vol. 113, pp. 607–619, Dec. 2020.

[4] A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, “An architecture for
adaptive task planning in support of IoT-based machine learning applica-
tions for disaster scenarios,” Comput. Commun., vol. 160, pp. 769–778,
Jul. 2020.

[5] R. M. Andrade, B. R. A. Junior, P. A. M. Oliveira, M. E. Maia, W. Viana,
and T. P. Nogueira, “Multifaceted infrastructure for self-adaptive IoT
systems,” Inf. Softw. Technol., vol. 132, Jul. 2021, Art. no. 106505.

[6] F. Alkhabbas, I. Murturi, R. Spalazzese, P. Davidsson, and S. Dustdar,
“A goal-driven approach for deploying self-adaptive IoT systems,” in
Proc. IEEE Int. Conf. Softw. Archit. (ICSA), Salvador, Brazil, 2020,
pp. 146–156.

[7] R. Nawaratne, D. Alahakoon, D. De Silva, P. Chhetri, and
N. Chilamkurti, “Self-evolving intelligent algorithms for facilitating data
interoperability in IoT environments,” Future Gener. Comput. Syst.,
vol. 86, pp. 421–432, Sep. 2018.

[8] M. A. Serhani, H. T. El-Kassabi, K. Shuaib, A. N. Navaz, B. Benatallah,
and A. Beheshti, “Self-adapting cloud services orchestration for fulfilling
intensive sensory data-driven IoT workflows,” Future Gener. Comput.
Syst., vol. 108, pp. 583–597, Jul. 2020.

[9] E. Lee, Y.-G. Kim, Y.-D. Seo, K. Seol, and D.-K. Baik, “Runtime verifi-
cation method for self-adaptive software using reachability of transition
system model,” in Proc. Symp. Appl. Comput., 2017, pp. 65–68.

[10] E. Lee, Y.-G. Kim, Y.-D. Seo, K. Seol, and D.-K. Baik, “RINGA: Design
and verification of finite state machine for self-adaptive software at
runtime,” Inf. Softw. Technol., vol. 93, pp. 200–222, Jan. 2018.

[11] E. Lee, Y.-D. Seo, and Y.-G. Kim, “A nash equilibrium based decision-
making method for Internet of Things,” J. Ambient Intell. Humanized
Comput., pp. 1–9, Jun. 2019, doi: 10.1007/s12652-019-01367-2.

[12] E. Lee, Y.-D. Seo, and Y.-G. Kim, “Self-adaptive framework based on
MAPE loop for Internet of Things,” Sensors, vol. 19, no. 13, p. 2996,
2019.

[13] R. Casado-Vara, P. Chamoso, F. De la Prieta, J. Prieto, and
J. M. Corchado, “Non-linear adaptive closed-loop control system for
improved efficiency in IoT-blockchain management,” Inf. Fusion,
vol. 49, pp. 227–239, Sep. 2019.

[14] S. Y. Shin, S. Nejati, M. Sabetzadeh, L. C. Briand, C. Arora, and
F. Zimmer, “Dynamic adaptation of software-defined networks for IoT
systems: A search-based approach,” in Proc. IEEE/ACM 15th Int. Symp.
Softw. Eng. Adapt. Self-Manag. Syst., 2020, pp. 137–148.

[15] M. A. Scrugli, D. Loi, L. Raffo, and P. Meloni, “A runtime-adaptive
cognitive IoT node for healthcare monitoring,” in Proc. 16th ACM Int.
Conf. Comput. Front., 2019, pp. 350–357.

[16] J. Van Der Donckt, D. Weyns, F. Quin, J. Van Der Donckt, and
S. Michiels, “Applying deep learning to reduce large adaptation spaces of
self-adaptive systems with multiple types of goals,” in Proc. IEEE/ACM
15th Int. Symp. Softw. Eng. Adapt. Self-Manag. Syst., 2020, pp. 20–30.

[17] J. Cámara, H. Muccini, and K. Vaidhyanathan, “Quantitative
verification-aided machine learning: A tandem approach for architect-
ing self-adaptive IoT systems,” in Proc. IEEE Int. Conf. Softw. Archit.
(ICSA), Salvador, Brazil, 2020, pp. 11–22.

[18] H. Muccini and K. Vaidhyanathan, “Leveraging machine learning tech-
niques for architecting self-adaptive IoT systems,” in Proc. IEEE Int.
Conf. Smart Comput. (SMARTCOMP), Bologna, Italy, 2020, pp. 65–72.

[19] A. Pauna, I. Bica, F. Pop, and A. Castiglione, “On the rewards of self-
adaptive IoT honeypots,” Ann. Telecommun., vol. 74, no. 7, pp. 501–515,
2019.

[20] H. Ouechtati, N. B. Azzouna, and L. B. Said, “Towards a self-adaptive
access control middleware for the Internet of Things,” in Proc. Int. Conf.
Inf. Netw. (ICOIN), Chiang Mai, Thailand, 2018, pp. 545–550.

[21] H. Muccini, R. Spalazzese, M. T. Moghaddam, and M. Sharaf, “Self-
adaptive IoT architectures: An emergency handling case study,” in Proc.
12th Eur. Conf. Softw. Archit. Companion, 2018, pp. 1–6.

[22] Y.-D. Seo, Y.-G. Kim, E. Lee, K.-S. Seol, and D.-K. Baik, “Design of
a smart greenhouse system based on MAPE-K and ISO/IEC-11179,” in
Proc. IEEE Int. Conf. Consum. Electron. (ICCE), Las Vegas, NV, USA,
2018, pp. 1–2.

[23] H. Kim, E. Lee, and D.-K. Baik, “Self-adaptive software simulation:
A lighting control system for multiple devices,” in Proc. Asian Simul.
Conf., 2017, pp. 380–391.

[24] E. Lee, Y.-D. Seo, and Y.-G. Kim, “A cache-based model abstraction
and runtime verification for the Internet-of-Things applications,” IEEE
Internet Things J., vol. 7, no. 9, pp. 8886–8901, Sep. 2020.

[25] K. L. McMillan, The SMV Language, Cadence Berkeley Labs, Berkeley,
CA, USA, 1999, pp. 1–49.

[26] “NUSMV: A New Symbolic Model Checker.” [Online]. Available:
http://nusmv.fbk.eu/ (accessed Aug. 31, 2020).

[27] A. Cimatti et al., “NUSMV 2: An OpenSource tool for symbolic model
checking,” in Proc. Int. Conf. Comput.-Aided Verif., 2002, pp. 359–364.

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1007/s12652-019-01367-2

LEE et al.: SELF-ADAPTIVE FRAMEWORK WITH MASTER–SLAVE ARCHITECTURE FOR INTERNET OF THINGS 16493

[28] “The NUXMV Model Checker.” [Online]. Available:
https://nuxmv.fbk.eu/ (accessed Aug. 31, 2020).

[29] R. Cavada et al., “The nuXmv symbolic model checker,” in Proc. Int.
Conf. Comput.-Aided Verif., 2014, pp. 334–342.

[30] E. M. Clarke Jr., O. Grumberg, D. Kroening, D. Peled, and H. Veith,
Model Checking. Cambridge, MA, USA: MIT Press, 2018.

[31] H. Nakagawa, H. Toyama, and T. Tsuchiya, “Expression caching for
runtime verification based on parameterized probabilistic models,” J.
Syst. Softw., vol. 156, pp. 300–311, Oct. 2019.

[32] A. Filieri, G. Tamburrelli, and C. Ghezzi, “Supporting self-adaptation
via quantitative verification and sensitivity analysis at run time,” IEEE
Trans. Softw. Eng., vol. 42, no. 1, pp. 75–99, Jan. 2016.

[33] B. Schmerl et al., “Architecture-based self-protection: Composing and
reasoning about denial-of-service mitigations,” in Proc. Symp. Bootcamp
Sci. Security, 2014, pp. 1–12.

[34] X. Zhao, V. Robu, D. Flynn, F. Dinmohammadi, M. Fisher, and
M. Webster, “Probabilistic model checking of robots deployed in
extreme environments,” in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019,
pp. 8066–8074.

[35] K. Kejstová, P. Ročkai, and J. Barnat, “From model checking to run-
time verification and back,” in Proc. Int. Conf. Runtime Verif., 2017,
pp. 225–240.

[36] J. Cámara, D. Garlan, B. Schmerl, and A. Pandey, “Optimal planning
for architecture-based self-adaptation via model checking of stochas-
tic games,” in Proc. 30th Annu. ACM Symp. Appl. Comput., 2015,
pp. 428–435.

[37] H. Gao, H. Miao, and H. Zeng, “Service reconfiguration architecture
based on probabilistic modeling checking,” in Proc. IEEE Int. Conf.
Web Serv., Anchorage, AK, USA, 2014, pp. 714–715.

[38] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani, “Model checking
and the state explosion problem,” in LASER Summer School on Software
Engineering. Heidelberg, Germany: Springer, 2011, pp. 1–30.

[39] E. A. Emerson and J. Y. Halpern, “‘sometimes’ and ‘not never’ revisited:
On branching versus linear time temporal logic,” J. ACM, vol. 33, no. 1,
pp. 151–178, 1986.

[40] T. Wilke, “CTL+ is exponentially more succinct than CTL,” in Proc. Int.
Conf. Found. Softw. Technol. Theor. Comput. Sci., 1999, pp. 110–121.

[41] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects Comput., vol. 6, no. 5, pp. 512–535, 1994.

[42] E. M. Hahn, T. Han, and L. Zhang, “Synthesis for PCTL in parametric
Markov decision processes,” in Proc. NASA Formal Methods Symp.,
2011, pp. 146–161.

[43] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Verifying continuous
time Markov chains,” in Proc. Int. Conf. Comput.-Aided Verif., 1996,
pp. 269–276.

[44] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and
Concurrent Systems: Specification. New York, NY, USA: Springer, 2012.

[45] G. Agha, J. Meseguer, and K. Sen, “PMaude: Rewrite-based specifica-
tion language for probabilistic object systems,” Electron. Notes Theor.
Comput. Sci., vol. 153, no. 2, pp. 213–239, 2006.

[46] S. Sebastio and A. Vandin, “MultiVestA: Statistical model checking
for discrete event simulators,” in Proc. 7th Int. Conf. Perform. Eval.
Methodol. Tools, 2013, pp. 310–315.

[47] A. Desai, T. Dreossi, and S. A. Seshia, “Combining model checking
and runtime verification for safe robotics,” in Proc. Int. Conf. Runtime
Verif., 2017, pp. 172–189.

[48] G. Su, T. Chen, Y. Feng, and D. S. Rosenblum, “ProEva: Runtime proac-
tive performance evaluation based on continuous-time Markov chains,”
in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng. (ICSE), Buenos Aires,
Argentina, 2017, pp. 484–495.

[49] B. Bonakdarpour and B. Finkbeiner, “Runtime verification for
HyperLTL,” in Proc. Int. Conf. Runtime Verif., 2016, pp. 41–45.

[50] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2,
pp. 1–42, 2009.

[51] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[52] J. Ariza, K. Garcés, N. Cardozo, J. P. R. Sánchez, and F. J. Vargas,
“IoT architecture for adaptation to transient devices,” J. Parallel Distrib.
Comput., vol. 148, pp. 14–30, Feb. 2021.

[53] G. Schiele, A. Burger, and C. Cichiwskyj, “The elastic node: An exper-
imentation platform for hardware accelerator research in the Internet
of Things,” in Proc. IEEE Int. Conf. Auton. Comput. (ICAC), Umea,
Sweden, 2019, pp. 84–94.

[54] D. Alahakoon, S. K. Halgamuge, and B. Srinivasan, “Dynamic self-
organizing maps with controlled growth for knowledge discovery,” IEEE
Trans. Neural Netw., vol. 11, no. 3, pp. 601–614, May 2000.

[55] D. De Silva and D. Alahakoon, “Incremental knowledge acquisition and
self learning from text,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Barcelona, Spain, 2010, pp. 1–8.

[56] M. U. Iftikhar, G. S. Ramachandran, P. Bollansée, D. Weyns, and
D. Hughes, “DeltaIoT: A self-adaptive Internet of Things exemplar,” in
Proc. IEEE/ACM 12th Int. Symp. Softw. Eng. Adapt. Self-Manag. Syst.
(SEAMS), Buenos Aires, Argentina, 2017, pp. 76–82.

[57] F. M. Barreto, P. A. D. S. Duarte, M. E. F. Maia, R. M. D. C. Andrade,
and W. Viana, “CoAP-CTX: A context-aware CoAP extension for smart
objects discovery in Internet of Things,” in Proc. IEEE 41st Annu.
Comput. Softw. Appl. Conf. (COMPSAC), vol. 1. Turin, Italy, 2017,
pp. 575–584.

[58] M. E. F. Maia, A. Fonteles, B. Neto, R. Gadelha, W. Viana, and
R. M. C. Andrade, “LOCCAM—Loosely coupled context acquisition
middleware,” in Proc. 28th Annu. ACM Symp. Appl. Comput., 2013,
pp. 534–541.

[59] B. R. A. A. Junior, R. M. C. Andrade, M. E. F. Maia, and T. P. Nogueira,
“Succeed: Support mechanism for creating and executing workflows for
decoupled SAS in IoT,” in Proc. IEEE 42nd Annu. Comput. Softw. Appl.
Conf. (COMPSAC), vol. 2. Tokyo, Japan, 2018, pp. 738–743.

[60] H. Muccini and M. T. Moghaddam, “IoT architectural styles,” in Proc.
Eur. Conf. Softw. Archit., 2018, pp. 68–85.

[61] “Arduino—Home.” [Online]. Available: https://www.arduino.cc/
(accessed Aug. 12, 2021).

[62] Y. Elkhatib and A. Elhabbash, “If a system is learning to self-adapt,
who’s teaching?” in Proc. Int. Symp. Softw. Eng. Adapt. Self-Manag.
Syst. (SEAMS), Madrid, Spain, 2021, pp. 256–257.

Euijong Lee received the B.S. degree in com-
puter information and science and the Ph.D. degree
in computer science and engineering from Korea
University, Seoul, South Korea, in 2012 and 2018,
respectively.

He was a Postdoctoral Researcher with the
Department of Computer and Information Security,
Sejong University, Seoul. He is currently an
Assistant Professor with the School of Computer
Science, Chungbuk National University, Cheongju,
South Korea. His research interests include self-

adaptive software, software engineering, model checking, Internet of Things,
and data mining.

Young-Duk Seo received the B.S. degree in com-
puter and communication engineering and the Ph.D.
degree in computer science and engineering from
Korea University, Seoul, Republic of Korea, in 2012
and 2018, respectively.

He was a Research Professor with the Computer,
Information and Communication Research Institute,
Korea University and a Postdoctoral Researcher
with the Department of Computer and Information
Security, Sejong University, Seoul, where he was
an Assistant Professor with the Department of Data

Science. He is currently an Assistant Professor with the Department of
Computer Engineering, Inha University, Incheon, South Korea. His research
interests include self-adaptive software, big data analysis, recommender
system, and entity linking.

Young-Gab Kim (Member, IEEE) received the
B.S. degree in biotechnology and genetic engi-
neering (minor in computer science and engineer-
ing) and the M.S. and Ph.D. degrees in computer
science and engineering from Korea University,
Seoul, South Korea, in 2001, 2003, and 2006,
respectively.

He was an Assistant Professor with the School
of Information Technology, Catholic University of
Daegu, Gyeongsan, South Korea. He is currently
an Associate Professor with the Department of

Computer and Information Security, and Convergence Engineering for
Intelligent Drone, Sejong University, Seoul. He has published over 130
research papers in the field of computer science and information security.
As a Korean ISO/IEC JTC 1 Member, he is contributing in developing data
exchange standards. His current research interests include big data secu-
rity, network security, home network, security risk analysis, and security
engineering.

Authorized licensed use limited to: Inha University. Downloaded on August 26,2022 at 07:16:30 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

